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This paper presents the design, analysis, and experimental validation of the passive case of a vari-
able stifness suspension system. The central concept is based on a recently designed véiigsie rsich-
anism. It consists of a horizontal control strut and a vertical strut. The main idea is to vary the load transfer
ratio by moving the location of the point of attachment of the vertical strut to the car body. This movement is
controlled passively using the horizontal strut. The system is analyzed usifigggain analysis based on the
concept of energy dissipation. The analyses, simulation, and experimental results show that the véHable sti
ness suspension achieves better performance than the congtaasstcounterpart. The performance criteria
used are; ride comfort, characterized by the car body acceleration, suspension deflection, and road holding,
characterized by tire deflection.

software failures. Recently, research in semi-active suspen-
sions has continued to advance with respect to capabilities,
narrowing the gap between semi-active and fully active sus-
Improvements over passive suspension designs is an actif§ension systems. Today, semi-active suspensions (e.g. using
area of research, as documented by the workalkfiatib Magneto-Rheological (MR)Ashfak et al, 2011), Electro-
et al. (2004; Williams (1997); Butsuen(1989; Tseng and  Rheological (ER)$ung et al.2007) etc.) are widely used in
Hedrick(1994; Valasek and Kortunf1998 2001); Karnopp  the automobile industry due to their small weight and vol-

et al. (1974; Karnopp(1983; Karnopp and Heesfl991);  uyme, as well as low energy consumption compared to purely
Evers et al.(2011); van der Knaap et ak2008. Past ap-  active suspension systems.

proaches utilize one of three techniquastfak et al, 2013); However, most semi-active suspension systems are de-
adaptive Fialho and Balas2002, semi-active Do et al,  sjgned to only vary the damping ddieient of the shock ab-

201Q Butsuen 1989 or fully active suspensionWiliams  sorber while keeping the ihess constant. Meanwhile, in
etal, 1993. An adaptive suspension utilizes a passive springsuspension optimization, both the damping ficent and

and an adjustable damper with slow response to improve théhe spring rate of the suspension elements are usually used
control of ride comfort and road holding. A semi-active sus- gs optimization arguments. Therefore, a semi-active suspen-
pension is similar, except that the adjustable damper has gjon system that varies both thefBtess and damping of the
faster response and the damping force is controlled in realsyspension element could provide more flexibility in balanc-
time. A fully active suspension replaces the damper with aing competing design objectives. Suspension designs that ex-
hydraulic actuator, or other types of actuators such as elechipijt variable stifness phenomenon are few in literature con-
tromagnetic actuators, which can achieve optimum vehiclesigering the vast amount of researches that has been done
control, but at the cost of design complexity, expense, etcon semi-active suspension desiguan der Knaag(1989;

The fully active suspension is also not fail-safe in the sense/enhovens and van der Kna@l995; Evers et al(2011) de-

that performance degradation results whenever the contradigned a variable geometry actuator for vehicle suspension
fails, which may be due to either mechanical, electrical, or



called the Delft active suspension (DAS). Although, the in-

tention of the design was not to vary theffstess of the sus-

pension system, the design used a variable geometry con-

cept to vary the suspension force Wjeetively changing the

stiffness of the suspension system. The basic idea behind the

DAS concept is based on a wishbone which can be rotated

over an angle and is connected to a pretensioned spring at a

variable location. The spring pretension generatestiat-e

tive actuator force, which can be manipulated by changing

the position. This was achieved using an electric mdtenz

(1977 invented a variable $thess suspension system which

includes two springs connected in series. One of the springs

is stiffer than the other. Under normal load conditions, the Variable Stifness Mechanism.

softer spring is responsible for keeping a good ride comfort.

Upon the imposition of heavier load forces, the vehicle is

supported more dtly and primarily by the stronger spring.

Conversion between the two conditions was done automati-

cally by engagement under heavy load conditions of a pairThis section gives a detailed description of the variablé-sti

of stop shoulders acting to limit the compression of the light ness concept, the overall system, its incorporation in a vehi-

spring. Similarly, upon excessive extension of the springs, arcle suspension, and the resulting system dynamic model.

additional set of stop shoulders are engaged automatically to

limit the amount of extension of the softer spring and causes

the stifer spring to resist further extension. Kobori proposed ) ] ) S

a variable stiness system to suppress a buildings’ responsed e variable stiness mechanism concept is shown in Big.

to earthquakesKobori et al, 1993. The aim was to achieve 1he Lever arm OA, of length, is pinned at a fixed point O

a non-stationary and no-resonant state during earthquake@nd free to rotate about O. The spring AB is pinned to the

Youn and Hac used an air spring in a suspension system tlever arm_atA and is free to rotate z_nlbout A. The other end B

vary the stifness among three discrete valugsi(n and Hac of the spring is free to tra'nslate horizontally as shown b.y the

1995. Liu et al. (2008 proposed a suspension system which dquble headed arrow. !t is also free to rota'te about point B.

uses two controllable dampers and two constant springs tyVithout loss of generality, the external foreés assumed to

achieve variable dtiness and damping. A Voigt element and act vertically upwa_rds a_t point Al is the horlzonf[al distance

a spring in series are used to control systerfireiss. The ©f B from O. The idea is to vary the overall tiess of the

\oigt element is comprised of a controllable damper and aSyStem by lettingd vary passively under the influence of a

constant spring. The equivalentfBtiess of the whole system Norizontal spring-damper system (not shown in the figure).

is changed by controlling the damper in the Voigt element. L€tk andlo be the spring constant and the free length of the
This paper presents the design and analysis of the passiRP"iNg AB respectively, and the vertical displacement of

case of a variable sfness suspension system. The variation € point A. The overall free lengih, of the mechanism is

of stiffness concept used in this chapter uses the “reciprocdf€fined as the value @ when no external force is acting on

actuation” Anubi et al, 2010 to effectively transfer energy e mechanism.

between a vertical traditional strut and a horizontal oscillat-

ing control mass, thereby improving the energy dissipation

of the overall suspension. Due to the relatively fewer number. : . . -

. : ; .~ The suspension system considered is shown in EiJ.he

of moving parts, the concept can easily be incorporated mtoschematic diagram is shown in Fig. The model is com-

existing traditional front and rear suspension designs. An im- . .

plementation with a double wishbone is shown in this paper.posed of a quarter car quy, wheel assembly, two spring-

The rest of this paper is organized as follows. In Scthe damper systems, road disturbance, and lower and upper

; : : . . wishbones. The points O, A, and B are the same as shown
variable stifhess concept is described, and the variabf® sti . ; : . .
. X : . in the variable sffiness mechanism of Fig. The horizon-
ness suspension system introduced. A detailed analysis

the system is presented in SegtSection3.3 describes the tal Cor?”o' forceu controls the position Of. the control mass
i . . . my which, in turn, controls the overall fiiness of the mech-
analysis of the passive case. Experimental results are given . o . . .
) X . N 2" ~anism. The tire is modeled as a linear spring of spring con-
in Sect.4. Time domain and frequency domain simulation
. . . stantk;.
results are presented in Sebt.The conclusion follows in

Sect.6.
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Figure 2. Variable Stithess Suspension System.

The assumptions adopted in F&jare summarized as fol-
lows:

141

S: Sprung Mass (Chassis)

1: Lower Wishbone

2: Upper Wishbone

U: Unsprung Mass (Wheel Assembly)
C: Control Mass

N: Inertial Reference Frame

Figure 3. Quarter Car Model

1. The lateral displacement of the sprung mass is ne-C(6:6) = —Mulp6” sinow(6),

2.3
Let

q:

glected, i.e only the vertical displacemsgtis consid-
ered.

. The wheel camber angle is zero at the equilibrium posi-

tion and its variation is negligible throughout the system
trajectory.

. The springs and tire deflections are in the linear regionsB(e) =

of their operating ranges.

Equations of motion

Ys
0

d

: @)

1
w(0) =| Ipcosd |,
0
by blp cosy 0
blocost bl cos'0 + beg, %gu |,
0 5 0do bsga
(d—1acos)?

9a(d.0) =

gde(d’ 9) =

be defined as the generalized coordinates. The equations of
motion, derived using Lagrange’s method, are then given by 9¢(d.6) =

M (6)G+ C(6,6) + B(6)g— K (q) + G(6)

= e33u+Wq(h)d, 2
where
Mg+ My + My mylp cosd 0
M(@)=| milpcosd Ic+mylicogs 0 |,
0 0 my

www.mech-sci.net/4/139/2013/

H2+d?+13 — 2ladcost — 2HIasing’

2l (d—1acos8) (dsind — Hcosh)

H2+d2 +12 - 2ladcosd — 2HIasing’

|2 (dsing — H cosd)?

H2+d2 +13 — 2ladcosd — 2HIaSing’

K(q):l ki (ot — 1) Ip cost (ys + I p sinb)

ki (ot — 1) (ys + Ip sing) \

ks(os — 1)(d - 1acosd)
0
ks(os—1)1a(dsing — H cosd)
0

+
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s m5+|ml+827d 5. The unique static equilibium point go =
@)= m DOCO 9 [ Yo 6o do ]T of the undisturbed system is known
and is given by
ke(or — 1) by K(do) — G(6o) + €33U0 = 0. 9)
Wq() =| kip(pt—1)co®y  bilpcoss |,
0 0

i This section presents the finite-gain stability analysis of the
d; = . system described in the previous section. The disturbdnce
LT in Eq. @) is assumed to be unknown a priori but bounded

r(t) is the road displacement signal. Itis a function of the roadin the sense thal, € £,. As a result, robust optimal control
profile and the vehicle velocity. The termsandp; charac- IS considered in which the gain of the system is optimized
terize the compression of the vertical strut and tire springsunder worst excitationd3all and Helton(1989; Helton and

respectively. They are defined as the instantaneous length dilames(1999; Soravia(199§; van der Schaf(1996. The
vided by its free length. following definition describes the notion of stability used in

the subsequent analyses.

Finite-Gain £-Stable (van der Schaft1996 Consider the
The following properties of the dynamics given in Eg). ére  nonlinear system
exploited in subsequent analyses: i
X = f(X,w)
1. The inertia matrixM (6) is symmetric, positive definite. 2= h(x)
Also, since each element & (9) can be bounded be-
low and above by positive constants, it follows that the \yherex e R", w e RP, ze R™ are the state, input, and output

eigenvalues, hence the singular value#i¢b) can also  yectors, respectively. The system in E&0), with the map-
be bounded by constants. Thus, there exigis, € R"  ping M, : £8 — £ is said to be finite-gaiL-stable if there

(10)

such that exist real constantg,8 > 0 such that
my [IX|[? < X"M(@)x < mp[Ix|*  and ® Myl <y Il +B, (11)
1 o Taa-l 12 2
EIIXII <X MTHO)x < EIIXII , ¥xeR 4) where||.|; denotes the norm of a signal, andl is the

) extended/ space defined as
2. C(8,0) can be upper bounded as follows
. . L2 ={xly: € L, V1 €[0, 00)} (12)
[C@.0)]| < c26”, crer". (5)
i . . . wherey; is a truncation of given as
Also, there exist a matri¥/ m(6,6) such thatC(6,6) =

Vm(6,6)g and ) O<t<
" w={ AP 0stst (13)
X" (EM (0) = V(6. ('9)) Xx=0, VxeR? (6) _ _ _
2 For the purpose of this paper, th&,-space is consid-

ered, hence the finite-gaifi-stability condition in Eq. 11)

The property in Eqg. &) is the usual skew symmetric
propery a9 Y is rewritten as\an der Schaft1l996

property of the Corioli&entripetal matrix of Lagrange

dynamics Lewis et al, 2004). MWl < Wil + 5. (14)

3. The damping matrix8(6) is symmetric and positive Wherell||2 denotes the’; norm of a signal given by
semi definite. Also, there exists positive definite matri-
cesB andB such that
B Iellz =

oo

f XT(t)X(t)dt] . (15)

0

0<x"Bx<x'B(f)x<x'Bx, VxeR> 7

4. The stifness vectoK(q) is Lipschitz continuous, i.e. y* =inf{y|[[My(W)|l, < y|Wl, + B} is the gain of the system,
there exists a positive constdatsuch that and, in the case of linear quadratic problems, isHhenorm
of the system. Given an attenuation leyet 0, and the cor-
1K(qu) — K(a)Il < kall G — Q- (8 responding system dynamics, the objective is to show that



Eq. (14) is satisfied for somgg > 0. This solution is ap- where
proached from the perspective of dissipative systeBal (
and Helton 1989 van der Schaft1996. The following def- _ 225,(P)lIbll2llcll2
inition describes the concept of dissipativity with respect to e Amin(P)
the system in Eq.10).
andP is the solution of the Lyapunov equatiBA+ATP+| =
Dissipativity The dynamics system EqlQ) is dissipative 0, which is obtained as
with respect to a given supply raséw, 2) e R, if there ex-

ists an energy functioW(x) =0 such that, for allx(tp) = P—} 1 %
Xo andts > to, T e % 3
U The suspension deflection is given as
V(x(t5)) < V(X(to)) + fs(w, 2dt, Ywe L. (16)
o ysd(t) = +/15(0) - I1£(t)
If the supply rate is taken as = {d(O)2 —d(t)? - 2Hx(sin6(0) — sinA(t))
1
W, 2) = Y2IwiZ - 11212, (17) —2x(d(0) cow(0) — d(t) cosi(t))} 2 (22)
Yo, — Vsl
then the dissipation inequality in EdL&) implies finite-gain s[ 0 ki kg ] |0—60 |, (23)
L-stability (van der Schaft1996, and the system is said to |d - do|
be y-dissipative. The dissipativity inequality is then written
as Using the Cauchy-Schwarz inequaliyyg(t) can be upper
) bounded as
V < YA - 1121 (18)
Ysd(t) < Kallell, (24)

where Kkg1,ks2, andk, are positive constants, and
As usual with suspension systems designs, the performance 2 k2
41 42"

criterion is expressed in terms of the ride comfort, suspension™ ~

deflection, and dynamic tire force. The performance vector The dynamic tire force is characterized using the tire

® Yeba deflection and is given by

W,Ysd
W, Ydtf

(19)

Z=

Yat (1) = Yu(0) = Yu(t)

=Yo, — Ys + Ip(Sindp — sind) (25)
characterizes the ride comfort, suspension deflection, and 1Yo. — Vel
road holding performances, whetg, w,, andws are the re- <[ 1 ks O ] |05_ 0ol
spective user specified performance weights for car body ac- - i — do| ’
celerationy.ps suspension deflectiopyy, and dynamic tire
forceyqs. The ride comfort is characterized by the car body whereks is a positive constant. Using the Cauchy-Schwarz

accelerationys' which is approximated using the following inequalit t) can be upper bounded as
high gain observerkhalil, 1996 quality,yeu(t PP

(26)

eip=An+bys, (0)=0 (20) Yair < A/1+ K2 [lell = Kgllell. (27)
Ycba = %CTU
Finally, the £>-norm of the performance vector in EQ.9)
where can be upper bounded as
-1 1 1 .
A=[ ¥ 0}, b=[ 1], c=[2]. 1Zl2 < ¢ali@lz + d2lellz (28)
where

The L,-norm of the car body acceleration can be upper
bounded asKhalil, 1996
$1=w1Cy

IYebdl2 < C1I¥sll> < Call€llz, (21)  ¢2 = woks + wke.



Thus there exists an eigenvaliig of M such that

Now, consider the constantftiess case in which the control 32 _ j— me

mass is locked at a given position As a result, the overall i1 Am, (37)
stiffness is constant for the entire trajectory of the system.
For this case, the dynamics in EQ) feduces to which implies that

. . . 1
M)t +Ca(6.0) + Bi(O)h - Ka(@) + Ca@) =W, (29) A= 5 (1+ dm 2+ )2 - 4(dn - 1E)), (38)
where from which it follows thatt > 0. SinceP is symmetric, the

conclusion follows.
M1 =M1:212,C1 = Crp, _ _ _
Ki=Ki2B1 =Biora, Remark It follows from Rayleigh-Ritz Inequality that

w=Wygq, di,Wg, =Wy, p1||,\/||2 <x"Py < pz“XHZ, (39)

Here, the corresponding dynamics of the control mass hagherep, = Amin{P}, andps = AmaxiP).
been eliminated.

Let Theorem 1. If the matrix
<, _RT T -1
€= g1 — o, (30) H1=1' _Kl_Kl . —Kl—m’]:Ml Bl (40)
2| -Ky-my(M{'By) -28B; ’
where
where
Ys ,
Oo, = [ ] (31) .
fo Ry = mM;K, - S, (41)
be the equilibrium value of the reduced state veqioAfter A ]
. i B1=B1—[m+ l, (42)
using the Mean Value Theorem, the closed-loop dynamics in 2
Eq. R9) is expressed as
is negative definite along the entire trajectory of the closed-
M8 +Vm e + Kiep +B1& = w (32) loop error system in E((32), then theL,-norm of the per-
formance vector in Eq19) can be upper bounded as
where
<vy1lWllp + B1, 43
. oK, 4G, ftae i ) 1zl2 < y1llwllz +B1 (43)
1= 901 et FTe et 1,62, sto;» d1)- where
Lemma 1: The matrix y1= ¢O——p2, (44)
p1hy
_ | mll \/E(b
P=l'mi ™, } (33) = YEPP2 (45)
VP
is positive definite, whera® < Amin{M1}. and
Proof.Let 2 be an eigenvalue #. It follows thatd € R, since ¢ = max{¢1, s} (46)
P is symmetric. The characteristic polynomial®is given 1
mM
by o= U'max{[ I ! ]} (47)
p(4) = def Al — P} (34) hy = [Amin{H 1} (48)
= dEt{(/l -1l -M)- mfl} (35)  Proof.Consider the energy function
_ _ . . . _ . . 1
Now, 1=1= p(1) = nt, which implies thati =1 is NOT V(ewner) = —x!Pyu. (49)
an eigenvalue oP. Suppose without loss of generality that 2
A# 1, then

where

2_)_
p(/l)z(/l—l)zdet{ﬂl —M}. (36) X1=[ 2 ] (50)



Taking time derivative of Eq.49) and using the skew sym-

metric property in Eq.]) yields

V =—¢] (By—myl)é —€ Kqep +elw+me M7lw

—mefM Ve —miefM;'B1& - me] MK 1e.  (51)
Using the property in EqX5) yields
. -1
V< xTHua g | M }W, (52)

which after using the negative definitenesdafyields

V < —hy e’ + o[ el 1wl (53)

TakeW(t) = \V(r1). WhenV(y1) £ 0, W = V/(2VV) yields

. hy

W< ——W ?HWH (54)

WhenV(y;) = 0, it can be verifiedihalil, 1996 that

D*W < — 2 |Iw], 55
PN [Iwll (55)

whereD™* denotes the upper right handigrentiation opera-
tor. Hence

hl

D*W< - W

5 \/_ (56)

for all values ofV(y,). Next using comparison (Lemma 3.4,

Khalil, 1996 yields

W(t) < W(0) exp(— ;—:)tz)

hi(t—7)
zv—fIIMle p( e ) " 7
which implies that
P2 h;t
sl < E {22 )
t
T hy(t—1)
+2—plof”W”eXp(_2—pz)dT' (58)

Thus

op \f 2p
2], < p1h21”W”2 2

O]

Lastly, after using the inequality in EqR§), the £,-norm of
the performance vector can be upper bounded as

<
2o <

o p2 \/Zzﬁpz
+ 0)||. 59
,—plhl ||/\’1( )“ (59)

Remark The £,-gain of the system decreases with increas-
ing h;. This means that the more the negative definiteness
of Hj, the more the disturbance rejection achievable by the
system.

The following theorem gives the bounds on achievable

Theorem 2. Given an attenuation level, and provided that
the performance weights are selected to satisfy tifecmnt
condition

¢ = maxig, ¢} < \/hy,

then the closed loop error system in E82) is y-dissipative
with respect to the supply rate

(W, 2) = y*wif? - |2
if

(60)

(61)

S 0.50
Y2 —.
Vh —¢?
Proof. Consider the energy storage function #49); Tak-

ing first time-derivate, and adding and subtracting the supply
rate yields

(62)

V <x"Hyy +x"Lw

<y IWi? =127 + xTHx
LT,\/ 2
2y2

0_2
<YWl - ||z||2+xT(H1+(¢2+ 4—72)|)X

1
+ 4—72,\/TLLT,\/ + q&ZH,\/Hz

21 1afl12 2 o? 2
<YM =112 - (=" - 7 Il (63)
After using the inequality in Eq6Q)
V <y Wi - 1127, (64)

which implies that the closed loop error system in B9) (s
v-dissipative.

Remark The inequality in Eq.§2) shows that the level of
performance achievable is limited by the amount of damp-
ing and stifness available in the system. It will be shown in
subsequent sections that this limit can be pushed further by
using a variable dfiness architecture. The lower bound in
Eq. 62) is termed best-case-gaih It defines the smallest
gain achievable by the system.

The stifness and damping matricé&s;, and B; contain
bounded functions of state and uncertain dynamic param-
eters which range between bounded values. Thus the best-
case gain of the system with constanfieiss can be lower
bounded as

s 05 (65)



where hj is the smallest positive number larger than the and
smallest singular value dfi4, andy1 is termed the fobust

best-case gaih P2=[ rr|1| ml ] (76)

is positive definite, with? < Aymin{M}. Taking the first time
Here, the control mass is allowed to move under the influ- derivative of Eq. {4), and following a similar procedure as

ence of a restoring spring and damper forces. There is nén the constant sfiness case in the previous section yields

external force generator added to the system. As a result, th@ < 2 2

. . . <yoIwe = + X3 Hoxz, 77
system response is purely passive. kgindb, be the spring VI~ 12 X222 (77)
constant and damping ciieient of the restoring spring and \yhere
damper respectively. The control foraés then given by

_ 1 -K -KT -KT-mM~'B
u=-byd—k(d-lg,) ©) 73| k-mmwe) 8 | P
and the resulting dynamics of the control massis givenby g _ ypvi-1Kk — Clgé|| I (79)

d + byd + ky(d — lo,) + ks(os — 1)(d — xcosd . '
myd + byd + Ky( 0d)+b s(os — 1)( ) B:B—(m1+ Clllell)l’ (80)

+ Esgdeé +bgad = 0, (67)
and
and the static equilibrium equation for the control mass is oK oG
given by K:——‘ +—‘ ,(1,82,€ L(0o, Q). 81
Fr|PRT $1,42,€ L5(0o, 0) (81)

do -1 k —1)(dp — xcostp) = 0, 68 . . .
ku(do =lo,) + ks(os, ~ 1)(Co 0 (68) Now, the robust best-case gain of the system with a passive
whered, is the equilibrium position of the control mass, and Variable stifness is given by
lo, is the free length of the restoring spring. Let 050

Vo> — (82)
eg=d-do ©9) 7 g2

be the displacement of the control mass from its ethbnumwhereh* is the smallest positive number larger than smallest
position. Substituting Eq.69) into Eq. 67) and using the smgular value oH,. Here, the spring constakg, and the

Mean Value Theorem yields damping cofficientb, of the control mass restoring spring-
damper system can be chosen suchhat y_. Thus, a bet-

Myl + Bye+Kqe=0, (70) ter performance can be achieved jus_tzby_lelztting thénstss
where vary naturally using a spring-damper system. This claim is
) supported subsequently by experimental and simulation re-
e € ] (71) sults. This is a very appealing result due to its practicability.
& | No additional electronically controlled or force generating
0 device is required, only mechanical elements like the spring
By = %gde ’ (72) and damper are used.
| bsgq + by
[ 0
k d(ps—1)(d—xcos) X . . . .
Kq = STTTU0 loerioon) . (73) The experimental setup is shown in Fig. It is a quarter
ky + ksw car test rig scaled down to a ratio of 1:10 compared to an
: deL(do.d) average passenger car in 20084TSA, 2004. The quarter

car body is allowed to translate up-and-down along a rigid

Now, consider the energy function ' > |
frame. This was made possible through the use of two pairs

Vo(e,e) = X;F’z)(z, (74) of linear motion ball-bearing carriages, with each pair on
separate parallel guide rails. The guide rails are fixed to the
where, rigid frame and the carriages are attached to the quarter car
frame. The quarter car frame is made of BDaluminium
X2 = [ e ] (75) framing and then loaded with a solid steel cylinder weighing
e approximately 80Ibs. The horizontal and vertical struts are
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L
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=

[
Vertical 2 0581 |

_— Strut E
Frame 7 0561 ]

(Chassis) <3
0541 g

| Road
Generator 052+ ; 1
1
0.5L g
Fixed Case Passive Case

Box Plot: Car Body Acceleration.

Quarter Car Experimental Setup.

the 2011 Honda PCX scooter front suspensions. The roac
generator is a simple slider-crank mechanism actuated by *
SmartmotoP SM3440D geared down to aratio of 49: 1 us-  136; I 1
ing CMI® gear head /N 34EP049. Three accelerometers are _ |
attached, one each to the quarter car frame, the wheel hub& -

and the road generator. Data acquisition was done using thﬁE 132p i ‘ ]

MATLAB data acquisition toolbox via NI USB-6251. Exper- & 5| L — _

iments were performed for the passive case, where the hori-£

zontal strut is just a passive spring-damper system, and als¢ 28| 1

for the fixed stifness case, where the top of the vertical strut ;55| ; ]

is locked in a fixed position. This position is the equilibrium |

position of the passive case when the system is not excited. ~ "*r 1 T

Two tests were carried out; sinusoidal, and drop test. For Fixed Case Passive Case

the sinusoidal test, the road generator is actuated by a con-

stant torque from the DC motor. As a result, the quarter car Box Plot: Tire Deflection Acceleration.

frame moves up and down in a sinusoidal fashion. To facili-

tate a good comparison of the observations, the “approximate ]

gain” of the system defined as For the drop test, the suspension system was dropped to the

ground from a fixed height (6 inches from the equilibrium
fT Z(t)2dt position and the wheel was not in contact with the ground).
2= OT—, (83) The resulting quarter car body acceleration and tire deflection

Jo r(t)dt accelerations were recorded. This test examines the response

of the system to initial conditions. Figur@sand8 shows the

wherez(t) is the signal of interest, amdt) is the road accel- .5 hody acceleration responses and tire deflection accelera-
eration signal, is numerically computed. The signals of inter-;,, responses for the fixed and variabléfatiss cases.
est are the frame acceleration and tire deflection acceleration 15hje1 shows the approximate gains for the sinusoidal and

signals. The experimental procedure was repeated multiplg,g ;s values of the drop test. The approximate gains of the
times in order to verify the repeatability of the experiment. g sgidal test given in the table are the mean values of the
Figures5 and6 show the box plots of the approximate gain multiple experiments.

distributions for the fixed dfiness and passive variablefiti
ness cases. It is seen that the worst and best case gains for
the fixed stithess are higher than those of the passive vari-

able stifness case, thereby confirming the analytical result )
obtained earlier that the variablefftiess achieves better dis- N order to study the behavior of the quarter car system at full
sipation. scale as well as responses like suspension deflection, which

!Here the ground is non accelerating as against the sinusoidal
test where the ground simulates the road signal.
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Frame Acceleration (g)
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Drop Test: Car Body Acceleration.
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—Passive Case
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Tire Deflection Acceleration (g)
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Drop Test: Tire Deflection Acceleration.

Solidworks Quarter Car Model.

were dificult to measure experimentally, and excitation sce-
narios that are diicult to implement experimentally, realistic

0.5 1 1.5 2

RMS/Approximate gain values of experimental results.
CBA: Car Body Acceleration. TDA: Tire Deflection Acceleration.

Fixed Passive

CBA(g) 0.4543 0.3710
TDA(g) 0.2746 0.2396
CBA 0.6220 0.5170
TDA 1.3316 1.2944

Drop (RMS)

Sinusoidal (Gain)

Dynamic parameter values.

Parameter Value

ms 315kg

my 37.5kg

bs 1500Nmts?
ks 29500 N n1t
ke 210000 N mt

damping and sfiness used are the ones given in the “Re-
nault Mégane Coug’ model in et al, 2004. The values
are given in Table.

In the time domain simulation, the vehicle traveling at a
steady horizontal speed of 40 mph is subjected to a road
bump of height 8cm. The Car Body Acceleration, Sus-
pension Deflection, and Tire Deflection responses are com-
pared between the constantffsiess and the passive vari-
able stithess cases. For the constanffséss case, the con-
trol mass was locked at threefidirent locationsd = 40 cm,

d = 4556 cm andd = 50 cm). The valual = 4556 cm is the
equilibrium position of the control mass. Next, a simulation
is performed for the passive case. The results are reported in
Figs.10, 11 and12 which are the the car body acceleration,
suspension deflection, and tire deflection responses, respec-
tively. Figure 13 shows the position history of the control
mass for the passive variablefBiess case.

simulations were carried out using MATLAB Simmechanics For the frequency domain simulation, an approximate fre-
Second Generation. First, the system was modeled in Solidguency response from the road disturbance input to the per-
works as shown in Fid. Next, the Simmehanics model was formance vector given in Eql9), is computed using the
developed. The ma#sertia properties used are the ones gen-notion of variance gaingchoukens et gl2001; Stack and
erated from the Solidworks model. The vertical strut and tireDoyle, 1995. The approximate variance gain is given by
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Suspension Deflection (m)

Tire Deflection {m)
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Time Domain Simulation: Car Body Acceleration.

0.15
—d =40cm
—d =45.56cm
0.1r —d =50cm
—passive
0.05F 1
0
-0.05 ‘
10 15 20 25 30
Distance (m)
Time Domain Simulation: Suspension Deflection.
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Time Domain Simulation: Tire Deflection.
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Time Domain Simulation: Control Mass Position.

2rN/w
Zdt
. 0
Gi9)= |57 : (84)

AZsirf(wt) dt
!

wherez denotes the performance measure of interest which is
taken to be car body acceleration, suspension deflection, and
tire deflection. The closed loop system is excited by the si-
nusoidr = Asin(wt), te[0, 27N/w], whereN is an integer

big enough to ensure that the system reaches a steady state.
The corresponding output signals were recorded and the ap-
proximate variance gains were computed using &4). Fig-
ures14, 15, and16 show the variance gain plots for the car
body acceleration, suspension deflection, and tire deflection
respectively. The figures show that the variabl&rsiss sus-
pension achieves better vibration isolation in the human sen-
sitive frequency range (4-8 HA50 2631-11997), and bet-

ter handling beyond the tire hop frequency59 Hz) Fialho

and Balas2002.

The design, analysis, and experimentation of the passive case
of a new variable sfiness suspension system is presented.
Using a detailedf,-gain analysis based on the concept of
energy dissipation, it is shown that inclusion of a variable
stiffness mechanism in the suspension design yields an im-
provement in the performance of the traditional system in
terms of ride comfort, suspension deflection, and road hold-
ing. The analysis claims are supported by both experimental
and simulation results. In the future, work will be done on
the semi-active case, where the passive spulangper sys-
tem will be replaced with a semi-active element like the MR
damper. Also, the active case will be examined, where the
horizontal strut will be replaced with a force generator such
as hydraulic or pneumatic actuators. Moreover, tfiect of
nonlinear passive elements in the horizontal strut will be con-
sidered, and possibly considering nonlinear paths for the con-
trol mass as well. Theffect of variable sffness on roll and
pitch dynamics will also be examined using a half-car model.
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ms, My, My
Lcmin{A}
Amax{A}
ominfA}
omadA}
Aijkl

Aicj

tr{A}
defA}
Ls(q1,02)

I
€in

R
Rela}

Euclidean norm of the vectar

Vertical displacement of the unsprung
mass

Vertical displacement of the sprung mass
Half distance between points C and D
Vertical strut length

Natural length of vertical strut

Length of the lower wishbone

Height of the control mass from the pivot
point of the lower wishbone

Distance between points O and A along the
lower wishbone

Tire spring constant and damping ¢oe
cient

Vertical Strut stifness and damping cfie
cient

Control(Horizontal) Strut sfiness and
damping

Sprung, unsprung and control masses
Moment of inertia of control arm.

The minimum eigenvalue of the matrx
The maximum eigenvalue of the matix
The minimum singular value of the matrix
A

The maximum singular value of the matrix
A

The sub-matrix of matrixA formed by
rowsi to j and columnk to |

The sub-matrix of matrixA formed by
rowsi to j and all columns

The trace of the matriA

The determinant of the matrix

The set of points that lie on the line seg-
ment joining the vectorg; andd,

Identity matrix

Thei-th column of the identity matrix of
dimensiom

The set of real numbers

The real part of the complex number
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